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Abstract-Three-dimensional interactions between a half-plane crack and penny-shaped cracks
which are not necessarily located in the same plane are analysed using the "weight function" method
of three-dimensional crack analysis. Analytical expressions are given for the interaction kernels in
the integral equations with the opening displacements ofpenny-shaped cracks as unknown functions.
By using the Rayleigh-Ritz method the singularities of the kernels are weakened to make them
suitable for finite element calculations. The weak form equations are also solved by a simple method
after approximating the opening displacement over each crack by a constant times a square root
function of the distance from its edge. This simple method of solution is shown to give results which
are in excellent agreement with those of Laures and Kachanov (1991, Int. J. Fract. 48, 255-279).

I. INTRODUCTION

Two-dimensional macro-microcrack interaction has been discussed by several authors,
because of its importance as a potential shielding mechanism. There are various analytical
methods for investigating this class of problems [see for example Rose (1986), Rubinstein
(1986), Gong and Horii (1989) and Shum and Hutchinson (1990)].

Of particular interest is the method of pseudo-tractions proposed by Horii and Nemat
Nasser (1985) in which the original problem is decomposed into several subproblems, each
containing just one crack. The stress field and the stress intensity factors at the various
crack tips are found by summing the stress intensity factor or the stress field contributions
from each of the subproblems. In the actual analysis of each subproblem crack face force
doublets are chosen as unknowns which are determined from the traction-free condition
on crack faces. The satisfaction of the traction-free condition on each of the cracks results
in a system ofsingular integral equations. Various numerical procedures have been proposed
to solve this system of integral equations.

The present paper is concerned with the three-dimensional counterpart of the above
problems. Specifically, the paper considers the interaction between a half-plane crack and
finite cracks which are not necessarily located in the same plane. The original problem is
decomposed into several subproblems each containing the half-plane crack and one of the
cracks of the original problem. The crack opening displacement is used as the unknown
function in the three-dimensional problem because of its known behaviour near the crack
edge. It can therefore be accurately approximated in terms of this known behaviour and
piece-wise linear functions. Such an approach has been previously taken by Huang and
Karihaloo (1992) in the study of interaction of penny-shaped cracks.

The use of the three-dimensional weight functions (Rice, 1985; Bueckner, 1987; Kari
haloo and Huang, 1989) permits the introduction of kernel functions in the integral equa
tions which depend only on the half-plane crack but are otherwise independent of the shape
and distribution of the other cracks. This allows the determination of kernel functions
analytically or numerically with integrations extending only over finite domains. By using
the Rayleigh-Ritz method, the strong singularity in the weight functions can be replaced
by a weak one suitable for finite element approximation to the finite domain. The finite
element method provides a reliable solution even when the cracks are very close to each
other. Additionally, a simple approximate solution is obtained by replacing the opening
displacement of each penny-shaped crack by a constant times a square-root function of the
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distance from the edge. This approximation is shown to give the same results as that of
Laures and Kachanov (1991) who regarded the (constant) average traction over the crack
faces as the unknown in their study of the macro-microcrack interaction. When the distance
between the cracks increases the approximate solutions tend to the finite element solutions.

2. MATHEMATICAL FORMU LAnON

Consider a half-plane crack (labelled B in Fig. 1) in an infinite elastic space. The
crack lies in the plane y = 0 and its front is parallel to the z-axis along x = a, such that the
region x < a is cracked. As is well known, in the absence of any other cracks arbitrary
applied loadings characterized by stress intensity factors Kc; induce singular stress fields
(Jeri (i,.i = x, y, z) ahead of the front

(J,j = Kc;8r,(¢)/.j2np, (I)

where 'Yo = I, II, III stand for the three different modes of loading, 8r,(¢) depend only on
¢, and (p, ¢) are polar coordinates in the plane (x-a,y).

Consider next a group of cracks of finite length denoted as Ai (i = 1, ... , n) interacting
with the above half-plane crack and with each other. The displacement discontinuity over
a generic crack Ai from this group is denoted by T k (k = x,y, z). Let the altered stress
intensity factor along the front of the half-plane crack be denoted by K,. The position of
crack Ai is described by the position vector of its geometric centre ro and by the outward
normal n = (n I, n2' n3)' From dimensional considerations and the fact that a linear problem
is being analysed, it may be concluded that

K,/K;- = .'#F(rn/hi' n), (2)

where hi denotes the characteristic size of Ai' To gain an insight into the interaction problem,
the mathematical formulation will be illustrated on specific examples. The formulation
however provides a good basis for the most general interaction problem, when the finite
cracks are arbitrarily distributed. Likewise, the choice of penny-shaped cracks should not
prove restrictive because the finite element technique used to solve the problem numerically
is applicable to any regular shaped cracks.

2.1. Two coplanar penny-shaped cracks ahead ofa half-plane crack
Consider two penny-shaped cracks of identical radius h ahead of the half-plane crack.

The cracks are located symmetrically with respect to z = 0 in the plane y = O. Denote the

y

x

Fig. 1. A half-plane crack (B) and an arbitrarily located and oriented penny-shaped crack (A).
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cracks by A I and A 2 and let the distance between their centres be d, such that d > 2b. The
cracks are assumed to be entirely in the region x > a, so that they never come in contact
with the half-plane crack. The external loading is assumed to have mode I symmetry, so
that the only nonvanishing component of displacement discontinuity on At (t = 1,2) is the
y-direction opening displacement T~(x,0, z). For brevity, the subscript will be omitted in
the sequel. By symmetry, T1(x,0,z) = T 2(x,0, -z) == T(x,z), so that we need to find
just one unknown displacement discontinuity. The original problem is regarded as the
superposition of three subproblems. The first subproblem represents the half-plane crack
subjected to the applied stress intensity factor K'f'. Each of the remaining subproblems
contains just one penny crack which is subjected to unknown pseudo-tractions from the
remaining crack in the presence of the half-plane crack. The stress intensity factor K.(z',a)
induced along the half-plane crack front by the external loading in the presence of the two
penny cracks can be evaluated as

Kf(z', a) = K'f'(z', a) +KfA'(Z', a) +KfA
2
(Z', a). (3)

The stress intensity factor KfA' induced at location z' along crack front x = a by a dis
tribution of displacement discontinuities rt over At is (Rice, 1985)

KfA'(z',a) = (A +21l) ILhfy,y(X,O,z;z',a)rt(X,O,Z)dXdZ

Il Ii rt(x,O,z) d d
= (2 )3/2(1 ) x z,

n -v AI Jx-a[(x-a)2+(z-z')2]
(4)

where the function h1y,y(x,0,z;z',a) was obtained by Rice (1985). Here and in the sequel
the integral is taken over one of the two plane crack surfaces, designated AI for brevity.
The unknown opening displacement T'(x, 0, z) is obtained from the traction-free condition
on the penny crack (no summation over repeated y)

(5)

where ny = 1, and

(6)

The superscripts designate the sources of contribution. In the present special case, the
interaction stress field can be represented as (Rice, 1985):

a::I(r) = 811 2 ILrt(.x, 0, 2)H(r, i) dx dZ

= 2n2(~ -v) fL ~3 [2(X;) 1/2 -arctan 2(X;) 1/2 ]rt(X, 0,2) dx di, (7)

where the general expression for H(r, r) is given in Appendix A. Following Bui (1977),
Kupradze (1963) and Cruse (1969), it may be shown by the use of the potential theory for
single and double layers that



2120 X. HUANG and B. L. KARIHALOO

In the second equation, r must be on At for a fixed t. The traction-free condition on A I or
A 2 gives the following singular integral equation for the determination of T 1(x, 0, z), and
by symmetry, that of T 2 (x,0, -z):

+ ~~~F!:~ fi;~!!1 dx dZ+ J2~f=-~)

+ 2n2(~_ ;j fi'~j L!(.x'~) ITi - arctan 2(~\":)\i2JT(x, 2) dxdi

+ 2n2(~ -l~) fi R3{~z) [t;~~2 -arctan 2~.~X)~;2JT(X,Z)dXdi= 0, (9)

where R( -2) = [(X-.i)2+ (z+ 2)2] 1/2,
The singular integral equation (9) may be solved in a variety of ways. Here we use the

finite element method. By using the Rayleigh-Ritz method, the singularity of the integral
equation can be weakened, as follows. Denote by B(T, T) the bilinear form:

B(T, T) = 4~(f_~jfidx dzfi {~[T:Ax'Z)T.x(.i, 2)+ T:z(x,z)T.z(x, 2)]

-q(x,z,x,2)T(x,z) T(X,Z)}dXdZ (10)

where

q(x z X 2) = fl(l-
2v2-.-.~~- + ....-'!.._. ..!.[.~~ -arctan ~-~-,;,-J

' " 2n(l-v)R 3(-Z) 2n 2(I-v)R 3 2(x:i)112 2(XX)lj2

+ 2~'i&--;) R3(~-2) [~~~~:2 -arctan £~;)~iJ (11)

Let

K('
fer) =~(~~~)

and define the inner product

(f, T) = f1f(X,z)T'(x,z)dx dz.

(12)

(l3)

Let T and T' be two crack opening displacements of A I or A 2
, The weak form of the

singular integral equation (9) suitable for finite element approximation is derived as follows.
Multiply both sides of (9) by T (x, z) and integrate over the domain A 1 or A 2, The reciprocal
relation yields the weak form of (9), namely

B(T, T') = (f, T'),

It is obvious from (10) that the bilinear form is symmetric

B(T, T') = B(T', T).

(14)

(15)
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Futhermore, B(T, T) > 0, since by (14) it is equal to the work done by the pressure f(r) in
opening the penny crack in the presence ofa half-plane crack. It follows that the variational
problem for the functional

J(T) = ~B(T, T) - (f, T) (16)

will lead to the unique solution of (14).
We also list the bilinear form for the case of a single penny crack in the plane y = O.

Instead of (11), we have

N Jl [R RJ
q(r, r) = 2n2(1- v)R 3 2(xi) 1/2 - arctan 2(xi) 1/2

which together with (10) gives the required bilinear form.

(17)

2.2. Two parallel and symmetrically located penny cracks
Consider two penny-shaped cracks of equal size symmetrically located with respect to

y = 0, a distance d apart. Denote these cracks A I and A 2
• Assume, as before, that the

extemalloading has mode I symmetry, so that the major nonzero components of displace
ment discontinuity on A I and A 2 are T I and T 2

, respectively. By symmetry,
T 1(x, d/2, z) = T 2(x, - d/2, z) == T(x, z). Again, the subscript y has been omitted. The stress
intensity factor K,(z', a) induced along the front of the half-plane crack by the opening
displacements of the penny cracks can be evaluated by superposition

where

KfA'(z',a) = (A,+2Jl) fLh1y,Ar;zl,a)T(r)dA'(r).

(18)

(19)

To determine T(r), r E At, we follow the superposition procedure described earlier and write
the traction-free condition on crack A 1 or A 2, using (7) and (8). The resulting integral
equation on A I or A 2 is

fi[ 2 N Jl IJ-
A' 8Jl T(i)H(r,r) + 4n(1-v) (R,xT,x+R.zT,z) R2 dA

+ f12 [8Jl2T(i)H(r,i)+S(d)(r,i)T(i)]dA+q~(r) = O. (20)

The first term on the left-hand side of (20) reflects the mutual interaction of penny cracks,
whereas the third and fourth terms reflect their interaction with the half-plane crack.
Because of the indicated mirror symmetry about the plane y = 0, (20) may be written as

where

(22)
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sed) X z i - z = (l-2v)f..l [3(l±~j ~~ __1_5_.... ~~ _~(t -v) J
( ,y, , ,y,?) 4n(t-v) (t-2v) R 5 (t-2v) R 7 + (I ~2v)RJ ' (23)

and H(r, i) is given in Appendix A.
As before, define the bilinear form

S(d)(- -;'\] -, f..l (e I eT(i) e 1 eT(f)) , '} _ _+ r,x, -y,Z} T(r)T (r)- --- - - --_ + ---:;;- T (r) dx dz. (24)
4n(l-v) ex R ex ez R ez

Integration by parts yields:

+S(d)(r,i, -ji,Z)]T(i)T(r)+ f..l ~ (eTJr~ a~~~~ + e_T(r2 eE~i2)l di di. 25)
4n(t-v) R ex ex ez ez J (

Define

q(r,r) = 8f..l2T(i)[H(x,y,z,i,ji,Z)+H(x,y,z,.X', -;J,Z)]+S(d)(X,y,z,.X', -·ji,z)T(i). (26)

It follows then that the variational problem for the functional

J(T) = !B(T, T) - fLT(r)(j~(r) dA(r)

will lead to the unique solution of (21).

3. FINITE ELEMENT DISCRETIZATION

(27)

3.1. Change of weak form
In the present paper, a finite element solution will be attempted for the weak form

using triangular elements, where

B(T, T) - (f, T) = 0 (28)

B(T, T) = 4n(;-v) fi dx dz fL{~[T,x(r)T:x<r) + TAr)T:z(r)]

- T(i) T'(r)q(r, i) } di di, (29)

(f, T') = fI f(i)T(i) di di, (30)

with R = Ir-il, and A denotes the penny-shaped crack: {(x,z)I(X-XO)2+ (Z-ZO)2 ~ b2}.
It should be noted that the solution of (28) has weaker properties than the solution of the
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original problem, i.e. it or its derivatives may have lesser order continuity. This is because
the pointwise description of the original problem has been converted to a global integral
form. Also in the weak form the kernel is less singular as the derivatives of l/R have been
transferred to the function T(x, z). The solution of the variational problem

with

J(T) = 1B(T, T) - (J, T)

(31)

(32)

will lead to the solution of (28), where Sh refers to the linear triangular elements. As the
unknown opening displacement along the edge of the crack must vanish in proportion to
the square root of the distance from the edge, the opening displacement function is rep
resented by

T(r) = Jb 2-c2g(r), (33)

where c = J(X-XO)2+(Z-ZO)2, and (xo,O,zo) denotes the centre of the penny-shaped
crack. The new unknown functiong(r) can be accurately approximated by the chosen linear
triangular elements. Substitution of (33) into (29) yields:

B(T, T') = f1dA f1{p'(r,i)[g,xg:x+g,zg:z)+q'(r,i)g(x,z)g'(x,Z)

+ [(x-xo)g:x + (z-zo)g:z)g(x, z)s(i, r)

+ [(x-xo)g,x + (Z-zo)g.z)g'(X, Z)s(r, i)} dA
= B'(g,g'),

where

k
p'(r,i) = RJb 2

-C
2Jb 2-C2,

(34)

'( N) _ k [ (x-xo)(x-xo) + (z-zo)(z-zo) ] ~22 ~2-2 ( _)qr,r-- -yU-cyU-cqr,r,
R Jb 2-c2Jb 2-C2 Jb 2

-C
2 Jb2-C2

k Jb 2
-C

2

s(r i) = - - (35)
, R Jb2-C2

with k = 1l/[4n(l-v»).
It is noted that the new bilinear form B'(g,g') retains the positive definiteness and

symmetry of B(T, T'). Likewise, the new kernel function retains the singularity of the old
kernel function. The new weak form is

B'(g,g')-(f',g') = 0,

where!, = f(r)Jb 2_c2, and the energy integral is

J'(T) = 1B'(T, T)-(f', T).

In the sequel the prime on J' and B' will be omitted for clarity of presentation.

(36)

(37)
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3.2. Stiffness matrix and generalized load vector
An arbitrary function l in the linear triangular finite element discretization can be

expressed in terms of its nodal values g;. = g(x1" z), Y 1,2,3 and the shape functions
NJx, z) for the element A c

where

l = L g"Nr(x, Z),
1

(38)

(39)

Ie

is the shape function for A" and A = U Ae • Let the subscripts e and e' denote integration
c= I

over the respective triangular element e or e', so that the energy integral (37) may be written
as

10' Ie E

J(l) = L Je(l) = L L JeAl')·
i'···· ! COO" 1 <,' -, I

(40)

In terms of gh, the energy integral Je(l) on the element Ae is a second order polynomial in
the nodal values (gj, g2, g,,):

The condition for the minimum of J,,(l) gives

L (N;" f')eg,.
1'~ 1

(41 )

oj E 3

o " = L L g;,Bee,(N;"N,)-(N",f')e = 0; e = I, .. . ,E, y = 1,2,3. (42)
cgr c~1 /=1

/,'

Denote K;~ BeAN}, Ni ), and K~:) = L K~:~::, then [K~r] is the element stiffness matrix.
c'",;;c I

while [f~] with f~ = (N;. f')e is the element generalized load vector.

4. A SIMPLE APPROXIMATE SOLUTION

Before presenting the finite element solution of (36), we propose a simple approximate
solution by a~~,tlming that the unknown opening displacement T(r) can be replaced by
T(r) = gofr - c2• It is obvious that this replacement will be the more accurate the further
away the penny crack is from the half-plane crack. In the limit of this distance tending to
infinity we have the exact solution, for a penny-shaped crack of radius b centred at (xo, 0, zo)
and subject to a uniform pressure p (Sneddon, 1946), for which go = p/(kn 2

). In this limiting
case the bilinear form B(T, T) is greatly simplified and can be exactly evaluated:

Ii Ii \7Jb22nJb'2--~2 2k
2 v -c v -c - 2 3 3

B(T, T) =gok-----.-·- dA dA = go - n b
A A R 3

(43)

In the presence of the half-plane crack, the bilinear form (34), with g(x, z) = go, becomes
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=9~[20.6708b3k- f1dAf1)b2
_C

2)b2-c2
q(r,r)dA1 (44)

where

with

q(r,r) =~k-\ [ R -arctan---;:::::::.=R===]
n R 2)~-~~-~ 2)~-~~-~

(45)

(46)

Similarly,

where

(f', T) = fIf(r))b2-c290dA =90 fi )b2-c2f(r)dA, (47)

KF
fer) =--,

~

Substituting (44) and (47) into (36) gives

(48)

(49)

90
KF

f1Jb2-c2/(~)dA

20.6708-fidA fi )b2
_C

2Jb2-c2q dA'

(50)

Finally, from (4) one obtains the increment in the stress intensity factor KfA (z 1, a) induced
along the half-plane crack front z = z 1 by the penny crack to be

(51)

The superposition of Ki and KfA gives the total stress intensity factor at z = z 1 along
the half-plane crack front. The procedure for obtaining the simple approximate solution of
(36) explained above with reference to a single penny crack interacting with the half-plane
crack can be generalized to many penny cracks. Several numerical examples will be given
in the next section together with the finite element solution, where it will be shown that the
results given by the simple approximate procedure are in excellent agreement with those of
Laures and Kachanov (1991). This is not surprising in that their simplifying assumption
whereby the unknown average traction over the penny crack is assumed to be uniform is
equivalent to the simplifying assumption made above.

5. NUMERICAL SOLUTION AND DISCUSSION

The integration of the double integrals in the bilinear form (34) can present numerical
difficulties because of the singular terms l/R and I/Jb 2 -c2 in the kernel. To reduce these
difficulties it is customary to employ a variable finite element mesh which gets finer as the
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Fig. 2. Division of a circular region into 300 triangular elements of increasing fineness as the crack
edge is approached.

edge of the penny-shaped crack is approached (Fig. 2). In the examples reported below,
sufficient accuracy was attained by dividing each circular region into 300 triangular elements
with 181 nodes. Within each triangle the double integrals were evaluated by 6 and 7 point
Gaussian quadrature formulae for triangles proposed by Cowper (1972). The accuracy of
the finite element solution was judged by comparing it with the known exact value of the
bilinear form B(T, T) for an isolated penny-shaped crack (43). The indicated subdivision
of the circular region gave the value 19.5170, while the constantgo was found to be 0.107311
which is within 0.6% of the exact value. When the number of triangular elements was
increased to 480 (with 281 nodes) the numerical value changed to 19.9643 and constant go
to 0.1049 which is only about 0.35% off the exact value. A similar accuracy can be expected
in the general interaction case because the kernel is a product of the kernel for an isolated
penny-shaped crack and a bounded linear triangular finite element basis.

5.1. A penny-shaped crack coplanar with half-plane crack
Let the distance separating the edge of the penny-shaped crack closest to the half-plane

front be denoted in a dimensionless form by 1J = (xo-a-b)j(2b). A typical plot of the
open penny-shaped crack in mode I (for 1J = 0.25) is shown in Fig. 3. The contours ofcrack
opening displacement are shown in Fig. 4. As expected, the influence of the half-plane crack
on the opening displacement of the penny-shaped crack is the stronger the closer the latter
is to the former. Figures 5-7 show the variation of g(r) along the leading diagonal of the
penny-shaped crack (z = 0) for three values of D. It is clear that g(r) tends to a constant
value with increasing D, lending support to the accuracy of the simple approximate solution
presented in Section 4. Figure 8 shows the variation of the stress intensity "factor (SIF)
K1 = K'[ +KfA normalized by K'[. For the present geometry K1 is always greater than
K'[ with the maximum being attained at the point on the front that lies on the line of
symmetry z = Zo (= 0). Table 1compares the FEM result with that ofLaures and Kachanov
(1991). The entries in Table 1 confirm the earlier statement that the simple approximate
solution (Section 4) is in excellent agreement with the solution of Laures and Kachanov
(1991) and that both these solutions tend to approach the finite element solution when the
penny-shaped crack is well away from the half-plane crack front.

5.2. Two coplanar penny-shaped cracks in front of a half-plane crack
Figure 9 shows the variation of mode I SIF along the front of the half-plane crack for

various values of D= (xo-a-b)j(2b) in the presence of two penny-shaped cracks lying in
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Fig. 3. A perspective of the open upper half of a penny-shaped crack in mode I for c5 = 0.25.

2127

the plane y = 0 with centres at (xo, 0, zo) and (xo, 0, - zo). The distance between the centres
as a proportion of their (equal) diameter is assumed to be 1.2. The maximum value of K)
is no longer attained along the line of symmetry z = 0 but at two points Iz.l/b = 1.2.
Moreover, the peak value ofK) is larger than that for a single penny-shaped crack (Fig. 8).
This stronger influence may be attributed to the additional interaction between the penny
cracks themselves which is taken into account in the present method. The simple approxi
mate solution can be obtained in a similar manner to that explained above with q replaced
by (II) and K) obtained by superposing Ki with KfA ' and KfA2. Table 2 gives the maximum
value of KIfKi along the half-plane crack front and compares it with the corresponding
value in the presence of just one penny-shaped crack.

Fig. 4. Contours of the crack opening displacement corresponding to Fig. 3. Note that the contours
are bunched together on the side closer to the half-plane crack.
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Fig. 5. Variation ofg(r) along the plane z = 0 for" = 0.05.

5.3. Interaction ofa halj~plane crack with two off-plane parallel cracks
Consider two symmetrically located off-plane cracks parallel to the half-plane crack

under mode I loading. The vertical distance d between these two penny-shaped cracks as a
fraction of their (equal) diameter is assumed to be 0.3 throughout this subsection. The
choice of d must ensure that it is larger than the expected opening displacement when all
the interactions are considered, so the two penny-shaped cracks will not touch each other.
Denote 6 = (xo-a)jb. When a part of a penny-shaped crack is located directly above the
main crack edge (6 < 1), the interaction produces a strong shielding effect for K1 at points
of the main crack front which are located directly under the crack. The effect changes to
one of amplification beyond this region reaching the maximum value at the point under the
edge of the crack and then dropping to zero as Z I increases.

As 6 increases the zone of shielding shrinks and disappears altogether at c5 = 1. The
variation of mode I SIF along the main crack front for several different values of () is shown

87.5 r-------,-------r-----~---........---__,

71.0 /) - 0.25

<"1

~ 52.5
:<

S
o'

{635.0

17.5

OL- ..l- ...L.. -l... --J.. --'

1.0 1.4 1.8 2.2 2.6 3.0
x

Fig. 6. Variation of g(r) along the plane z = 0 for" = 0.25.
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48 l) - 0.75
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OL.- l-- ~_____'~_____J'__ ___'

1.0 1.4 1.8 2.2 2.6 3.0
x

Fig. 7. Variation ofg(r) along the plane z = 0 for [) = 0.75.

in Fig. 10. Table 3 shows the maximum and minimum values ofKIfK'I along the half-plane
crack for various b.

An approximate formula for the interaction contribution to K( may be obtained by
assuming z = i. x = i, Y = Y in eqn (A23) of Appendix A. such that

g(O) = (- 9- 5.75 sin2 0-4.5 sin4 8) cos 8, (52)

1.5

y

1.4
0.010

"
0.015

1.3
0.025

KI/Kt

0.045
1.2

1.1

21

L.;=~~~~~0~.2~5~~~;;;~~~~~~~1.0 Sii 0.500
~ 4 0

zt/b
Fig. 8. Variation of K.IKj' along the half-plane crack front in the presence ofa penny-shaped crack

centered at (xo. 0, 0). Note that the maximum is attained at z = z 0 (= 0).
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Table 1. Maximum values of K,IK't at z, = Zo along the front of a half
plane crack due to interaction with a coplanar penny-shaped crack centered

at (xo, 0, 0)

Laures and Approximate
(j Kachanov (1991) method eqn (51) F.E.M.

0.005 \.48 1.476 1.9807
0.010 l.37 1.368 1.8172
0.015 l.31 \.308 1.6310
0.025 1.24 1.237 1.4374
0.045 1.17 1.165 1.2701
0.100 1.09 1.086 1.1228
0.250 1.03 U)30 1.0383
0.500 I.(ll 1.0!O 1.0124
0.750 \.005 1.005 1.0057

1.6 r-----..,.------r-----....,..------,

0.250------------------1

1.0 ~~[illt:=E:===E==x==::::::j
-2 -1 0 1 2

zllb
Fig. 9. Variation of KdKf along the half-plane crack front in the presence of two identicalpenny
shaped cracks centered at (xo, 0, zo) and (xo,O, -zo), with IZoi/b = 1.2. Note that the two (equal)

peak values are larger than that in the presence of a single penny-shaped crack (Fig, 8).

Table 2. Maximum KIfK(' at Iz.l = IZol along the
half-plane crack front in the presence of two coplanar

penny-shaped cracks

Two coplanar One coplanar
(j penny cracks penny crack

0.005 1.5446 1.476
0.010 1.4242 1.368
O.Ql5 1.3565 1.308
0.025 1.2770 1.237
0.045 1.1954 1.165
0.100 1.1063 1.086
0.250 1.0408 1.030
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1.5

y

1.0

d

21-1
0.5

-2 o
Ztlb

Fig. 10. Variation ofKdK'{' along the half-plane crack front in the presence oftwo off-plane parallel
penny-shaped cracks for different values of (; = (xo-a)fb and dfb = 0.3.

f(O) = 0.3 + 1.55 sin2 0+ sin4 0-14 sin6 0, (53)

-(xo-a) 1 (1t xo-a)
14 = 2 2 2 + 2~ -2 -arctan-- ,

YoPo Yo Yo
(54)

where

8Jl2H = 8~ {;~ [gee) + f(O)] +2814}, (55)

xo-a
cosO =--,

Po
. 0 Yosm =-.

Po
(56)

Finally, (4) may be written as:

Table 3. K.fK'{' along the half-plane crack
under mode I loading in the presence of two
symmetrically located parallel penny-shaped

cracks

(; Max. Min.

0.4 1.1268 0.6177
0.6 1.1310 0.7685
0.8 1.1238 0.9416
1.0 1.0985 1.0000
1.2 1.0702 ooסס.1

1.4 1.0385 1.0000
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1.5
y

2-1
0.5

-2 o
zllb

Fig. II. Variation of KIfK'{' along the half-plane crack front in the presence of a single penny
shaped crack slightly off the plane of symmetry (Yo 0.05h) for different values of <1 = (x,,-a)jh.

(57)

5.4. Interaction oIa half-plane crack with one ojFplane penny-shaped crack
The model in this paper can only deal with mode I loading. But when the vertical

distance of one off-plane crack from the half-plane crack is very small, the shear effects
may be neglected. By using the approximate formula, the mode I SIF along the main crack
front for several different values of 0 = (xo-a)/b and vertical distance Yo = O.05b was
calculated and the results are shown in Fig. 11. The maximum and minimum values are
listed in Table 4 and compared with those of Laures and Kachanov (1991). When a part
of the crack is above the half-plane crack edge (0 < 1) the interaction produces ashielding
effect for K{ at the point of the half-plane crack edge located directly under the crack; the
effect changes to the one of amplification beyond this region and vanishes quickly at points
further along the edge. As 0 increases, the zone ofshielding shrinks and disappears altogether
at 0 = 1.

Table 4. KIfKI' along the half-plane crack under mode I loading in the
presence of a single off-plane parallel penny-shaped crack

Max. (Laures
and Kachanov) Max.

Min. (Laures
and Kachanov) Min.

0.4
0.6
0.8
1.0
1.2
1.4

1.372
1.419
1.442
1.379
1.091
1.042

1.253
1.252
1.269
1.225
1.083
1.040

0.596
0.699
0.879
1.000
1.000
1.000

0.593
0.714
0.898
1.000
1.000
1.000
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Note added in proof
In Section 2.2 the contributions of Tx and T, to K1 were not included. Further work is required to quantify

precisely these contributions. The "curves" shown on Figs 8, 9 and II are only intended to link up specific points
for which detailed computations were carried out. These points should have been joined by smooth curves showing
a smooth maximum, as in Fig. 10.

APPENDIX A. CALCULAnON OF H(r, i) IN MODE I

In mode I

(AI)

where

with

Denote

R' = J(x-a)2+ y 2+(z-z')2,

p = J(x-a)2+ y 2,

I
Co = - 4(I_v)n3/ 2 '

(A2)

(A3)

(A4)

(A5)

(A6)

which will be calculated in Appendix B. Substituting Fm• and P"" P", into (AI) yields,

H
_ fa {Cij cos (c/Jj2) cos (cpj2) f yCij sin (c/Jj2) cos (cpj2)
- - 1+- f2

-00 2 JPP 4 JPPp
ycij sin (cp/2) cos (c/J/2) f yyCij sin (c/J/2) sin (cp/2) }

+4 G- 3+-8- G _ 14 da, (A7)
yPPP yPPPP

where

II = F'I -4p2(1-cos c/J)F12 -4p2(I-cos cp)F21 + 16p2p2(I-cos c/J)(I-cos CP)F22 ,

12 = (I +2 cos c/J)F11 +8p2(2+cos c/J)FI2 -4p2(l-cos cp)(l +2 cos c/J)F21

-32p2y2F13 -32p2p2(I-cos cp)(2+cos c/J)F22 + 128p2p2y2(I_cos CP)F23 ,

$AS 311115-K
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/3 = (I +2 cos {fi)F, I+Sp2(2+cos {fi)F2I -4p2(l-cos 4>)(1 +2 cos {fi)F'2

-32jJ2y 2F3, -32p2p2(l-cOS 4>)(2+cos 4>)F22 + 12Sp2p2y2(l-cos 4>)F32,

/4 = (I +2 cos 4»(1 +2 cos {fi)F, I+64p2p2(2+cos 4>)(2+cos 4»F22

+ 1024p2p2y2y2F33 + Sp2(2+cos 4>)(1 +2 cos {fi)F, 2+ 8p2(2+cos {fi)(1 +2 cos 4»F2,

_32p 2y 2(1 +2 cos {fi)F'3-32p2y2(l +2 cos 4»F31

-256p2p2y2(2+cos 4»F32-256p2p2y2(2+cos (fi)F23 • (A8)

For brevity Fm.(r, r, a) have been simply written as Fmn in (A7). Further analytic manipulation is difficult without
additional assumptions. But numerical solution is made easier when the range ofintegration ( - CfJ, a) is transferred
to a finite segment (0,4>0) where

4>0 = arctan ~~-.
xo-a

In the most general case, the following relation between 4> and {fi is true

x-a x-x x-a x-a y
cot {fi = -.- = -.- + -.-. = -:;-- + -:: cot 4>.

y y y y y

Hence

(A9)

(AlO)

(All)

so that

cos {fi = cot {fi

jl+cot2{fi

x-x y
-.- + -::cotcP

y y (x-x)+ycotcP

j y 2+(X-X+ycot;W'
(AI2)

and from

we have

1: (x-x) tan 4>+ y
cos~= ,

j y2 tan24>+ [(x-x) tan 4> + yj2

. J: ytan cP
Sin 'I' = ,

j y 2tan2 4>+ [(x-x) tan 4>+yF

v
4> = arctan -"

x-a

(AD)

(AI4)

(A15)

--y-da
d4> = (x-a)2

I +(-L)2
x-a

yda = ~da
(x_a)2+ y 2 p2 .

(A16)

Other useful formulae are:

• y .jy
2

tan
2

4>+[(x-x)tan4>+yj2 j'2 [e) t"'j'
p=~=y _ = y + x-x+yco '1"

Sin cp Y tan 4>

Special case 1 : x = x, y = y
In this case, the penny crack A is narrow and parallel to the half-plane crack front x = a:

A = {(x,y,z)ly = yo,zo ~ Z ~ Z"Xo ~ x ~ xo+Ax}.

One may therefore assume

and

p=p,

so that (A7) takes t.he simpler form

(AI7)

(AI8)

(AI9)



Fmn are also simplified:

H can be expressed in powers of F = [(Z_Z)2+(p+ji)2]-1

(
• 2 fa {[I+COSq, 29+3Icosq, 2 4cosq, 4 3y6J

H r, r) = Colt F -2-2- + 8 4 Y +-26 Y --s
-00 p p p p

2[6(I+COSq,). 168 6 ( ::'\2( 2(I+coSt/J) 2 1+2cost/J 4)]
+F y - -y + Z-ZJ - Y - Yp4 p6 p4 p6

3[1008(I-COS q,) 6 ( ::'\2( 8(1 + cos t/J) 4 144 6)]+F y + Z-Z, - Y +-yp' p4 p6

+F4(z-Z)2192 (-3+:.COS q,) y6+ F S(Z-Z){ _ 3~;2(I-COSt/J)y6J}do.

By use of the identity

we have

H=C2 fa {F[I+COSt/J 13+IScosq, 2_ y 4-~ 6J
olt 2 2 + 8 4 Y 6 S Y

-00 P P P p

F 2[8(l+COSt/J) 2 2(1+3cosq,) 4 24 6J F4[-768(l+COSt/J) 6]+ 2 Y + 4 Y -(;y + 2 Y
P P P P

+F{32(1:~Sq,) y4_ 48(3:~OSt/J)y6]+FS[12288(I-COSt/J)y6l} do.

Whenz=z,

2l3S

(A20)

(A2I)

(A22)

fa [(1 +COS q,) y2 y' y6 ]
H= C~lt _00 8p4 + 32p6(29+31 cost/J)+ 8p S (3+7 cos t/J)+ 4pIO(18-63cost/J) do. (A23)

When Z #- Z, we use the relation

where

F I ( I )
p2 = Z2 4p2-F , (A24)
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(- ")'Z2 = ,";~' , (A25)

and express allierms of the type P"lp'" through IIp'k and F' as follows:

;~ = d, [4> -FJ
I~ = I[4~4 -4~2;}' + ;~J

;~; = ~i [ 4;;6 - 4:),j;4 + 4Z14/;2 - {.],

I~ = ~2 [4l,- 4Z~;}6 + 4Z
I
·P· - 4i~p' - :6J

;; =i~[4jdjpj- 4~' - F']'
;; = ~'4 [4'~.- 42~i;y2 + 4~j + F']'

~; = ~[4j~, -4i }i? + 4'].;;2 -1:4 -fJ
;,' = ~j [43d'p'i 4'~4-:'z'j -FJ
f;.; = d· [4ji~'1;4 43li;;; + 4~~4 + ~~: +F'l
~; = ~ [4i~61)' 43~ - yo - Jz', -F

4J
Substituting the above expansions for Fm IP,,, into the expression for H gives:

H(r 1') = C'll r" .. {(I +~~j» [ ..L. -FJ+ (13+ 15 cos </» )',[_1. __L... + .!:..J
' 0 J.£ 2Z' 4p' . . 4p4 4Z'p' Z'

- fir4~' - 4i~' + 4i:pi {4J- ~[4;~ii 4Z~p6 + 4Z14
p4 - 4Z~P' +;.J

+ ~(I +~s ~y' [ ..~I.... _ .. ~~ .. _ F'J' _ 2( 1±2.~lJs </».t
4[...t 2 _ + l:!.. + F'J

Z' 4'Z'p2 4Z' Z4 4'p4 4'Z'p' 4Z'

- 2~6 [4'~6 -4'~'p4 + 4'14pi 4~ - ~~]

+ 320~~~<£ij.4[43d4p' - 4'~4 {;, -F']

_ 48(3+cos </»y6 [_! ....3..._ +.~L.· + 3f..' +F3J
Z4 4JZ'p4 4'Z4p' 4'Z' 4Z'

- 76~:t';~s </>~y6 [44Z~p2 4J~6 - 4;;' -{~-r]
+12288(l-COs</»y<i[F'J}da. (A26)

Collecting terms with like powers of IIp'm and F" gives:

fn {[ 1 )" )'4 y. ]H = C51l F ~;(l +cos </»-.:..(3+cos </»+ ':"(;(4+5 cos</>)+ ZS (3 cos ep)
-x 2Z' 8Z Z

[

)'2 )'4. . Y' ]+F' -8 Z' (I +cos </>)+ 2' (-6-2 cos </» + 26 (24 cos </»

+F{ - ;: 32(I+COS</>)+48~;(I+3COS</>)J



Interaction of penny-shaped cracks with a half-plane crack

+F{7:S~2 (I +cos </»]+F5[12288y6(I-COS </»)

1 [ 1 y2 y4 y6 ]
+ p2 8Z2 (I +cos </» + 32Z 4 (3+cos </»- 4Z 6 (cos </» - 4Z 8 (3 cos </»

1 [ y2 y4 y6 J+ p. 32Z2 (13+ 15 cos </»+ 8Z43(1+cos</»- 4Z6 (3 cos </»

+ :6[-;;2 -:;:J + :8[-:;:]} da,

which may then be rewritten in the following final form:

where In(xo, c2
) stands for the recursive integral:

with

When" =0

i'" dx I
In(xo, O) = = (2 I) 2n I'

Xl) n- Xo

The integrals with cos </> have been calculated using the following relation:

2137

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)
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APPENDIX B. CALCULATION OF Fmn(r,r,a)

For calculating H(r, i) we need the integrals:

(81)

where the position vectors i = (x,y,i), r = (x,y, z) refer to the points on the surfaces of penny cracks. F
"

can be
obtained by using the method of residues

(82)

where F = [(Z_i)2+(p+p)2]-I, P = J(x-a)2+ y 2and p = j(.i_a)2+y2. The same method may also be used
to evaluate all other F..... But a simpler way to do this is by using the recursive formulae:

Fm(n+ o(r,r,a) = - -2'~ : Fmn(r,r,a),
mp up

• I 0 •
F(m+lln(r,r,a) = - 2- o.Fmn(r,r,a),

mp up

~ I a2
~

F(m+')(n+O(r,r,a) = -4----::- 0 o·Fmn(r,r,a).nmpp up up
(83)

It is useful to know that the function F is symmetric with respect to p and p and as far as this Appendix is
concerned p and pare independent. Symmetry with respect to p and Ii is retained by all partial derivatives of F
with respect to p or p, and the following relations hold among the derivatives:

o o-+PF 0 o,+PF

op opp iJp' = op opP oi

o-+P+'F o·+P+'F
opp+'+ I = opp+-+ I .

(B4)

By use of (B3) and the indicated symmetry properties of F and its derivatives, Fmn may be written as follows:

Moreover

FI2(r,r,a) = F21 (r,i,a),

F 13 (i, r, a) = F 31 (r, r, a),

F21(i, r, a) = F3,(r,i,a).

Derivatives of Fmay be written in terms of the powers of F:

::= _2(p+p)F2,

iJ'F
Op2 = 6F2-8(z-i)'F3

,

::~ = -24(p+p)F3 +48(z-i)2(p+p)F4,

(B5)

(86)
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such that F",. may finally be expressed as:

[( 1 1) 1 22JFl1 = 1t 2p3+ pp2 F- pp2 (z-i) F ,

1t[(1 1)(3 1 1) 2 21(1 1) 3JF22 =2 p+fi pp+ p2+--p F -4(z-i) pp p+fi F ,

1t [3 (I 1) 2 p+p 2 (1 1) 2 3JF31 =-_- -.:;-F+g ~+- F +6-_-F -8 -+~ (z-Z) F ,
8p2 p3 P P p2 P p

_ 7t [1 (16 12 3 4) 2 2 1(4 1 3) 3
F32 - 8 - -: -=--2 +-=r- + -=3 + 3" F -4(z-i) -:- -=- + '"2 + -=i Fp p pp p p p p pp pp p P

2(1 1)2) 4J-24(z-i) p+ fi F ,

F33 = 3g1t[(! +~)(~+ _; 2 +_~ + -;+!4)F3

P P pp P P P P P P

2 1(I 1)(4 3 3)" 1(1 1)3~]-2(z-i) -:- -+~ -=-+-+-.:;- F -16(z-i) -+~ F .pp p p pp p2 p2 P p
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